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Abstract
The pigmented neurones of the substantia
nigra are typically lost in Parkinson’s dis-
ease; however, the possible relation be-
tween neuronal vulnerability and the
presence of neuromelanin has not been
elucidated. Early histological studies re-
vealed the presence of increasing amounts
of neuromelanin in the substantia nigra
with aging in higher mammals, showed
that the neuromelanin granules are sur-
rounded by a membrane, and compara-
tively evaluated the pigmentation of the
substantia nigra in diVerent animal spe-
cies. Histochemical studies showed the
association of neuromelanin with lipofus-
cins. However, systematic investigations
of the structure, synthesis, and molecular
interactions of neuromelanin have been
undertaken only during the past decade.
In these later studies, neuromelanin was
identified as a genuine melanin with a
strong chelating ability for iron and an
aYnity for compounds such as lipids, pes-
ticides, and MPP+. The aYnity of neu-
romelanin for a variety of inorganic and
organic toxins is consistent with a postu-
lated protective function for neuromela-
nin. Moreover, the neuronal accumulation
of neuromelanin during aging and the link
between its synthesis and a high cytosolic
concentration of catechols suggest a pro-
tective role. However, its putative neuro-
protective eVects could be quenched in
conditions of toxin overload.
(J Clin Pathol: Mol Pathol 2001;54:414–418)
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Black/brown pigmented granules in the human
central nervous system has been observed since
the 1930s.1 The most pigmented regions are
two mesencephalic areas: Sömmering’s sub-
stantia nigra and the locus coeruleus.2–4 Histo-
logical studies displayed pigmentation in the
substantia nigra of other mammals phyloge-
netically close to humans, including the chim-
panzee, gibbon, and baboon, and more distant
ones, such as horses and sheep.5–7 Histochemi-
cal studies on human substantia nigra and
locus coeruleus found that the pigment had
similar properties to the melanins,8 9 including
being insoluble in organic solvents, being
bleached by hydrogen peroxide, and being
labelled by silver stains.10 The pigment was
therefore named neuromelanin.

Histological studies showed that neuromela-
nin granules were located in the neuronal peri-
karyon and were surrounded by a double

membrane.11–13 In humans and horses, histo-
chemical analyses indicated an association of
neuromelanin granules with lipofuscin.14 15 In
the substantia nigra, neuromelanin accumu-
lates during aging2 3 16 17 and is found after the
first 2 to 3 years of life.18

Parkinson’s disease is a neurodegenerative
disorder caused by the selective death of
pigmented substantia nigra neurones,19 20 giv-
ing rise to dopamine depletion in the neostria-
tum,21 22 and resulting in a clinical syndrome
characterised by tremor, rigidity, and severely
impaired motility. The pigmented substantia
nigra neurones are more vulnerable than the
non-pigmented ones.2 However, important
questions remain regarding the possible role of
neuromelanin in the substantia nigra, both
under physiological conditions and in the
pathogenesis of Parkinson’s disease. Here, we
review those studies undertaken during the
past 10 years on the molecular aspects of neu-
romelanin, and attempt to integrate these
structural aspects with morphological findings.

Structure
Initially, the name neuromelanin was chosen
because of its similarity in appearance to cuta-
neous melanin. However, recent electron para-
magnetic resonance (EPR) and metal analysis
studies indicate that chemically neuromelanin
is indeed a genuine melanin because it has a
stable free radical structure and avidly chelates
metals.4 23–25 The ability of neuromelanin to
interact with several inorganic and organic
compounds, including metal ions and lipids,
complicates studies of the structure of this pig-
ment.

Degradation analyses using potassium per-
manganate and hydriodic acid hydrolysis
showed that neuromelanin has properties of
both pheomelanins and eumelanins.26 27 El-
emental analyses of neuromelanin revealed a
high sulphur content (2.5–2.8%), with a molar
C/H ratio lower than that of synthetic
melanins,27–29 thus indicating the presence of
aliphatic groups and benzothiazine rings.
Infrared spectroscopy of neuromelanin re-
vealed the presence of aliphatic groups and a
low intensity aromatic component, whereas in
synthetic melanins the aliphatic groups were
absent.28–30 Chemical degradation studies
showed that neuromelanin contains equal
amounts of indole and benzothiazine mol-
ecules.27

Neuromelanin consistently shows a peptide
component of about 15%.31 The amino acids
could be derived from a direct reaction
between the melanic polymer and proteins,31 or
dopamine molecules bound to cysteinic resi-
dues of polypeptidic chains. Indeed, the
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precursor of neuromelanin synthesis has been
suggested to be cysteinyl-dopamine,26 28 32 33

although a study using hydriodic acid hydroly-
sis failed to identify the corresponding degra-
dation products.34 Moreover, nuclear magnetic
resonance spectroscopy indicates that the pres-
ence of both aliphatic and aromatic hydrogens,
and the ratio of aliphatic to aromatic hydrogens
is again higher in neuromelanin than in
synthetic melanins,30 suggesting that dopamine
cannot be the only precursor in neuromelanin
synthesis.

x Ray diVraction studies have shown that
neuromelanin has a multilayer (graphite-like)
three dimensional structure similar to synthetic
and naturally occurring melanins.35 36 The
three dimensional structure is derived from
planar overlapped sheets consisting of cyclic
molecules of indolebenzothiazine rings. How-
ever, these sheets are stacked much higher in
neuromelanin than in any other synthetic and
naturally occurring melanins.36

Biosynthesis
The process of neuromelanin formation is
obscure, although a recent in vitro study has
clearly established some steps of this complex
process.37 It has long been debated whether the
synthesis of neuromelanin is enzymatically
mediated or whether it is a pure autooxidation
process of dopamine derivatives. For eumela-
nin synthesis, the enzyme tyrosinase (also
known as monophenol monoxygenase) cataly-
ses the conversion of tyrosine to L-dopa and
then to dopa-quinone.38 Some authors pro-
posed that tyrosinase could also be involved in
neuromelanin biosynthesis because tyrosinase
mRNA39 and promoter activity40 have been
detected in the substantia nigra. However,
tyrosinase has not been detected in the
substantia nigra by immunohistochemistry.41

Moreover, albinos who lack tyrosinase display
normally pigmented substantia nigra.10

Alternative enzymatic actions have been
suggested, including tyrosine hydroxylase me-
diated oxidation of dopamine.42 In another
study, peroxidase catalysed the oxidation of
tyrosine to dopa and then dopamine, and
further oxidisation to the respective quinones
that are possible precursors of neuromelanin.43

It was proposed that prostaglandin H synthase,
which has peroxidase activity and is located on
the mitochondrial membrane, could mediate
the oxidation of dopamine to dopamine-
quinone, which can internally cyclise and, by
the addition of the amine group on the
aromatic ring, form an indole derivative called
dopaminochrome.44 45 In addition, enzymatic
activity of macrophage migration inhibitory
factor was suggested for neuromelanin synthe-
sis, because it converts catecholamines into
dihydroxyindole derivatives, which are poten-
tial precursors of neuromelanin.46

Alternatively, neuromelanin could derive
from non-enzymatic oxidation. The autooxida-
tion of catechols to quinones with the addition
of a thiol has been demonstrated in the brain.47

A dopamine-melanin can be synthesised by the
autooxidation of dopamine, although there are
several structural diVerences between synthetic

melanins and the natural one isolated from the
substantia nigra.4 29–31 Recently, neuromelanin
synthesis was induced in rat substantia nigra
neurones and PC12 cell cultures by exposure
to L-dopa.37 The pigment produced in this
model contains a stable free radical; in
addition, both light and electron microscopy
have shown that the pigment synthesised in
these cells appears to be identical to human
neuromelanin, and the granules are sur-
rounded by a double membrane, similar to the
naturally occurring neuromelanin of the sub-
stantia nigra.37 In those experiments, treatment
with the iron chelator desferrioxamine inhib-
ited neuromelanin synthesis stimulated by
L-dopa; therefore, it seems that iron is involved
in neuromelanin formation. In this model,
neuromelanin synthesis was shown to be driven
by an excess of cytosolic catecholamines not
accumulated in synaptic vesicles.

Interaction of neuromelanin with organic
compounds
Neuromelanin interacts with numerous or-
ganic molecules including lipids, pesticides,
and toxic compounds. MPTP (1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine) is a neuro-
toxin that after systemic administration selec-
tively kills substantia nigra neurones by
conversion through monoamino-oxidase type
B activity to methylphenylpyridine (MPP+),
which in turn stops the respiratory chain at the
NADH-CoQ1 reductase stage,48–50 leading in
humans and several other animal species to an
irreversible parkinsonian syndrome.51 52 Neu-
romelanin might reduce the toxicity of MPTP
by accumulating its toxic metabolite MPP+ in
vivo.53

The herbicide paraquat has a molecular
structure similar to that of MPTP, and has
been proposed as a Parkinson’s disease induc-
ing agent. The pesticide is accumulated in
neuromelanin containing nerve cells, where it
appeared that the neuromelanin adsorbed
intraneuronal paraquat, protecting the neu-
rones from consequent damage.54

Neuromelanin can also accumulate chlor-
promazine, haloperidol, and imipramine,
thereby contributing to the control of the
intraneuronal concentration of these mol-
ecules.55 Because higher intraneuronal concen-
trations of dopaminergic drugs might be toxic
to substantia nigra neurones, neuromelanin
can influence this toxicity.

The association of neuromelanin with lipids
has been described in several studies.28 31 56

Although previous studies proposed that lipids
were part of the neuromelanin molecule, recent
work has shown that neuromelanin contains
about 20% adsorbed lipids.31 Cholesterol is a
minor component in this lipid mixture, with
the major component being a new class of
polyunsaturated lipid with a high molecular
mass, low volatility, and low oxygen content.31

It may be that neuromelanin itself catalyses the
synthesis of this type of lipid. Alternatively,
neuromelanin could originate from lipofuscin
by an enzymatic reaction occurring in lyso-
somes,11 14 although this hypothesis is not sup-
ported by recent observations.37 57 In this case,
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high molecular mass lipids could be derived
from a lysosomal metabolic pathway and might
interact with neuromelanin within these or-
ganelles.

Interaction of neuromelanin with iron
and other metals
High concentrations of iron and other non-
alkaline metals are present in several brain
nuclei.58 59 Neuromelanin from the substantia
nigra can interact with many heavy metal ions
such as zinc, copper, manganese, chromium,
cobalt, mercury, lead, and cadmium; in addi-
tion, it binds iron particularly strongly.4 24 25 60 61

In the course of Parkinson’s disease and related
syndromes, the concentration of iron in the
substantia nigra increases by 30–35%.62 63 This
accumulation of nigral iron seems to occur
within the neuromelanin granules: the concen-
tration of iron in these granules is higher in
patients with Parkinson’s disease than in
normal subjects.64 65

Although a neuromelanin–glycolipid com-
plex was proposed as a good chelating and
insolubilising system to bind iron ions,56 it now
appears that iron is bound to catecholic groups
and not to lipids. EPR studies showed that in
the substantia nigra the ferric iron is bound to
neuromelanin as a high spin complex with an
octahedral configuration.4 24 66 Mössbauer
spectroscopy demonstrates that ferric iron is
chelated by the neuromelanin polymer and that
the iron sites are arranged in a ferritin-like
ironoxyhydroxide cluster form.57 61 67 x Ray
absorption fine structure spectroscopy68 and
infrared spectroscopy29 studies confirmed that
iron in neuromelanin was bound by oxygen
derived phenolic groups in an octahedral con-
figuration. In substantia nigra tissue, neu-
romelanin is only about 50% saturated with
Fe(III), therefore maintaining an important
residual chelating capability, which can protect
against iron toxicity.4 66

Neuromelanin can sequester redox active
iron ions, reducing the formation of free
hydroxyl radicals.69 Thus, in normal subjects,
neuromelanin may play a protective role by
inactivating the iron ions that induce oxidative
stress. The ability of neuromelanin to chelate
other redox active metals such as copper, man-
ganese, chromium, and toxic metals including
cadmium, mercury, and lead4 24 25 60 strength-
ens the hypothesis that neuromelanin may be a
high capacity storage trapping system for metal
ions and, as such, may prevent neuronal dam-
age.

Neuromelanin during aging and
Parkinson’s disease
Neuromelanin accumulates normally with age
in human substantia nigra neurones.2 16 17 70 A
neuronal pigment has also been observed in the
substantia nigra of adult rats and dogs, and its
concentration seems to depend upon age. In
very old (23 months) rats, but not in younger
animals, neuromelanin granules were detected
by electron microscopy; similar results were
observed in aged dogs.71 Neuromelanin gran-
ules were also detected in catecholaminergic
cerebellar cells of monkeys (Macaca mulatta

and Macaca nemertina) and their presence cor-
related with age.18 In human substantia nigra,
the first small, brown neuromelanin granules
were clearly discernable at approximately 3 to 5
years of age.18 72 The neuromelanin content of
neurones is highest in individuals in their 60s,
after which it decreases16; this phenomenon
may reflect the neuronal loss observed in these
anatomical structures during aging. However,
there is no significant loss of catecholaminergic
neurones in the substantia nigra of normal
subjects until very old ages.73–75 A new spectro-
photometric method indicates that neuromela-
nin is not detectable during the 1st year of life,
but starts to accumulate thereafter, with a con-
tinuous linear trend, and reaches a concentra-
tion of 2.3–3.7 mg/g of substantia nigra pars
compacta in 50–90 year old individuals. Male
and female subjects showed the same age trend
of neuromelanin concentration. In patients
with Parkinson’s disease, neuromelanin values
were 1.2–1.5 mg/g of substantia nigra pars
compacta, which is less than 50% of that seen
in age matched controls (L Zecca, 2000,
unpublished results). The absolute number of
pigmented neurones in the substantia nigra of
normal subjects may be dependent upon
ethnicity—an Indian population was found to
have fewer pigmented neurones than an age
matched Western population.74

These observations suggest that neurode-
generative disorders characterised by nigral
neurone loss, best typified by Parkinson’s
disease and other parkinsonian syndromes, are
not the result of early aging, as hypothesised in
the past. Because the neuromelanin concentra-
tion in substantia nigra neurones increases, and
the number of pigmented neurones appears to
be constant over the life span, it seems that
neuromelanin accumulates only in a subpopu-
lation of nigral neurones, whereas other
dopaminergic neurones remain non-
pigmented. The observed decrease in the neu-
romelanin concentration occurring in the sub-
stantia nigra of patients with Parkinson’s
disease (L Zecca, 2000, personal communica-
tion) confirms the loss of pigmented neurones
occurring in the substantia nigra of these
patients, as has been reported in neuropatho-
logical studies.73 76 77 Other studies indicate that
neuromelanin values decrease in the surviving
neurones of the substantia nigra during Parkin-
son’s disease.19 78 This could be the result of
reduced neuromelanin synthesis, neuromela-
nin degradation, or higher vulnerability of the
pigmented neurones.

Neuropathological investigations have exam-
ined the presence of extraneuronal neuromela-
nin in subjects with idiopathic Parkinson’s dis-
ease and MPTP intoxication.79 80 Most of this
extraneuronal neuromelanin is phagocytosed
by microglia and is associated with astrocytic
and microglial activation. It may be that
neuromelanin could be the eVector of a chronic
inflammation process in the substantia nigra.
Although in idiopathic Parkinson’s disease the
neurones are depleted in both the substantia
nigra and locus coeruleus, in MPTP intoxi-
cated subjects, locus coeruleus neurones are
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spared.80 Such a diVerent neuronal vulnerabil-
ity might eventually be explained by structural
diVerences in the neuromelanin of the substan-
tia nigra and locus coeruleus.

Although neuromelanin may play a cytopro-
tective role by sequestering redox active metals,
toxic metals, and organic toxic compounds,81

neuromelanin might also become a source of
free radicals by reaction with hydrogen perox-
ide.60 When free neuronal iron increases to the
point where neuromelanin becomes saturated
and it starts to catalyse the production of free
radicals, neuromelanin would become cyto-
toxic.69 Moreover, because hydrogen peroxide
can degrade neuromelanin, the pigmented
neurones could loose this putatively protective
agent. The consequence may be a release of
iron and other cytotoxic metals or compounds
from neuromelanin that could accelerate neu-
ronal death.66
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